Assignment 2 (418)

AssignmentPart 1: Write a complete proof of the equivalence of statements (1) and (2) in Theorem 4.11 of Croom.Part 2: Next, write a complete proof of the following statement:Let f, g: X→Yf, g: X→YY is Hausdorff and that there is a dense subset D of Xsuch that f(x)=g(x) for all x∈Dx∈D f(x)=g(x)f(x)=g(x) x∈Xx∈XAs with Writing Assignment #1, use a solid organizational structure:- State the hypotheses- State the conclusions- Clearly and precisely prove the conclusions from the hypotheses- Results presented earlier in the text may be used and must be clearly documentedA few notes about format: use Microsoft Word; use Equation Editor for all mathematical symbols, e.g. x ∈ X or Cl(A) ⋂ Cl(X-A); and use the fonts Cambria and Cambria Math in size 11 so your typed work is the same font as your equations.Course and Learning ObjectivesThis Writing Assignment supports the following Course and Learning objectives:CO2: Use homeomorphisms and show two spaces are topologically equivalent.LO2: Define relevant continuous functions and homeomorphisms.

 
"Looking for a Similar Assignment? Order now and Get 10% Discount! Use Code "GET10" in your order"

If this is not the paper you were searching for, you can order your 100% plagiarism free, professional written paper now!

Order Now Just Browsing

All of our assignments are originally produced, unique, and free of plagiarism.

Free Revisions Plagiarism Free 24x7 Support